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ifolding. Leptons are fitted into SU(4)W multiplets and located on a symmetry preserving
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with supersymmetry, or as low as several TeV in the non-supersymmetric case. Another

symmetry breaking chain with the low-energy gauge group SU(2)L × U(1)3R × U(1)B−L

can also give rise to a weak mixing angle sin2 θW = 0.25 at tree level after gauge sym-
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phenomenological consequences.
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1 Introduction

The standard model (SM) of electroweak interactions, based on the spontaneously broken

gauge symmetry SU(2)L×U(1)Y , has been extremely successful in describing phenomena

below the weak scale. However, the SM leaves some theoretical and aesthetical questions

unanswered, two of which are the origin of parity violation and the smallness of neu-

trino masses. Both of these questions can be addressed in the left-right model based on

SU(2)L × SU(2)R × U(1)B−L [1]. The supersymmetric extension of this model [2] is espe-

cially intriguing since it automatically preserves R-parity. This can lead to a low energy

theory without baryon number violating interactions after R-parity is spontaneously bro-

ken. However, in such left-right models parity invariance and the equality of the SU(2)L
and SU(2)R gauge couplings is ad hoc and has to be put in by hand. Only in grand

unified theories, based on SO(10) [3], can the equality of the two SU(2) gauge couplings

be naturally guaranteed through gauge coupling unification. But in these grand unified

theories the unification scale is usually much higher than the weak scale. For example,

in the supersymmetric SU(5) [4] model the weak mixing angle is predicted to be 3/8 at

tree level while the measured value is 0.23 at the weak scale. The difference can only be

bridged via a long renormalization evolution, which in turn requires a rather high unifi-

cation scale at about 1016 GeV. This high-scale unification has the unsatisfactory feature

that a large energy-desert lies between the weak scale and the unification scale. Therefore,

it is interesting to explore the unification of the left-right symmetries at low energy scales.

Novel attempts for the unification of the left-right symmetries have been proposed

in the literature, such as the SU(4)PS × SU(4)W or the SU(4)W × U(1)B−L models [5–

7]. However, in these new unification models the weak mixing angle either can not be

predicted (in SU(4)W × U(1)B−L the weak mixing angle is arbitrary) or predicted as 3/8

at tree level, implying a relatively high unification scale. Besides, in order to accommodate
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matter unification, mirror fermions are necessarily introduced in order to fill each SU(4)W
multiplet. The problems of these models are similar to the difficulty in the SU(3)W ×U(1)

extension [8], which uses SU(3)W to unify the SM groups SU(2)L × U(1)Y .

With orbifold gauge symmetry breaking (OGSB) [9–14], we can achieve gauge interac-

tion unification while leaving matter fields partially unified or un-unified. The problem of

the SU(3)W unification can be nicely tackled in this approach [15–17]. In this work, we pro-

pose the use of an SU(4)W group to unify the left-right gauge couplings on a S1/(Z2 ×Z2)

orbifold, in which leptons are fitted into SU(4)W multiplets and located on the symmetry-

preserving O brane while quarks are placed onto an O′ brane with broken symmetry. This

model predicts the weak mixing angle to be sin2 θW = 0.25 at tree level and achieves gauge

coupling unification at the order of 102 TeV in supersymmetric cases and several TeV in

non-supersymmetric cases.

The content of this work is organized as follows. In section 3 we discuss SU(4)W
left-right unification in the supersymmetric (SUSY) context, focusing on gauge symmetry

breaking on the five-dimensional orbifold. In section 4 we examine the gauge coupling

running and unification, especially the compactification scale from the weak mixing angle.

In section 5 we discuss another SU(4)W symmetry breaking chain into SU(2)L ×U(1)3R ×
U(1)B−L. Section 6 contains our conclusions.

2 Brief review of orbifold gauge symmetry breaking

We consider a five-dimensional space-time M4×S1/(Z2×Z2) comprising of Minkowski

space M4 with coordinates xµ and the orbifold S1/(Z2×Z2) with the coordinate y ≡ x5.

The orbifold S1/(Z2×Z2) is obtained from S1 by moduling the equivalent classes:

P : y∼− y , P ′ : y′ ∼ −y′ , (2.1)

with y′ ≡ y + πR/2. There are two inequivalent 3-branes located at y = 0 and y = πR/2

which are denoted by O and O′, respectively.

The five-dimensional N = 1 supersymmetric gauge theory has 8 real supercharges, cor-

responding to N = 2 supersymmetry in four dimensions. The vector multiplet physically

contains a vector boson AM where M = 0, 1, 2, 3, 5, two Weyl gauginos λ1,2, and a real

scalar σ. In the four-dimensional N = 1 language, it contains a vector multiplet V (Aµ, λ1)

and a chiral multiplet Σ((σ + iA5)/
√

2, λ2) which transform in the adjoint representation

of the gauge group. The five-dimensional hypermultiplet has two physical complex scalars

φ and φc, a Dirac fermion Ψ, and can be decomposed into two 4-dimensional chiral multi-

plets Φ(φ,ψ ≡ ΨR) and Φc(φc, ψc ≡ ΨL), which transform as each others conjugates under

gauge transformations.

The general action [18] for the gauge fields and their couplings to the bulk hypermul-
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tiplet Φ is

S =

∫

d5x
1

kg2
Tr

[

1

4

∫

d2θ (WαWα + h.c.)

+

∫

d4θ
((√

2∂5 + Σ̄
)

e−V
(

−
√

2∂5 + Σ
)

eV + ∂5e
−V ∂5e

V
)

]

+

∫

d5x

[∫

d4θ
(

ΦceV Φ̄c + Φ̄e−V Φ
)

+

∫

d2θ

(

Φc

(

∂5 −
1√
2
Σ

)

Φ + h.c.

)]

(2.2)

where Tr(T aT b) = kδab.

Because the action is invariant under the parity operation P , under this operation, the

vector multiplet transforms as

V (xµ, y) → V (xµ,−y) = PV (xµ, y)P−1 , (2.3)

Σ(xµ, y) → Σ(xµ,−y) = −PΣ(xµ, y)P−1 . (2.4)

If the hypermultiplet belongs to the fundamental or anti-fundamental representations, since

P = P−1, we have

Φ(xµ, y) → Φ(xµ,−y) = ηΦPΦ(xµ, y) , (2.5)

Φc(xµ, y) → Φc(xµ,−y) = −ηΦPΦc(xµ, y) . (2.6)

Alternatively, if the hypermultiplet belongs to the symmetric, anti-symmetric or adjoint

representations, we have

Φ(xµ, y) → Φ(xµ,−y) = ηΦPΦ(xµ, y)P , (2.7)

Φc(xµ, y) → Φc(xµ,−y) = −ηΦPΦc(xµ, y)P , (2.8)

where ηΦ = ±1.

Similar results hold for the parity operation P ′, we just need to make the following

replacements in the above equations:

P −→ P ′ , ηΦ −→ η′Φ . (2.9)

The gauge symmetry and supersymmetry can be broken by choosing suitable repre-

sentations for P and P ′. For a field φ, in the representation of unbroken gauge symmetry,

we obtain the following transformation

φ(xµ, y) → φ(xµ,−y) = pφφ(xµ, y) , (2.10)

φ(xµ, y
′) → φ(xµ,−y′) = p′φφ(xµ, y

′) , (2.11)

where pφ = ±1 and p′φ = ±1. Introducing the notation φpφp′
φ
, we obtain the Kaluza-Klein

(KK) mode expansions as of such φ fields as follows

φ++(xµ, y) =

+∞
∑

n=0

√

1

2δn,0πR
φ

(2n)
++ (xµ) cos

2ny

R
, (2.12)

– 3 –
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φ+−(xµ, y) =
+∞
∑

n=0

√

1

πR
φ

(2n+1)
+− (xµ) cos

(2n+ 1)y

R
, (2.13)

φ−+(xµ, y) =

+∞
∑

n=0

√

1

πR
φ

(2n+1)
−+ (xµ) sin

(2n+ 1)y

R
, (2.14)

φ−−(xµ, y) =

+∞
∑

n=0

√

1

πR
φ

(2n+2)
−− (xµ) sin

(2n+ 2)y

R
. (2.15)

Here n is an integer and the fields φ
(2n)
++ (xµ), φ

(2n+1)
+− (xµ), φ

(2n+1)
−+ (xµ) and φ

(2n+2)
−− (xµ)

respectively acquire a mass of 2n/R, (2n + 1)/R, (2n + 1)/R and (2n + 2)/R upon com-

pactification. Only φ++(xµ, y) possesses a four-dimensional massless zero mode. It is easy

to see that φ++ and φ+− are non-vanishing at y = 0, while φ++ and φ−+ are non-vanishing

at y = πR/2.

3 SU(4)W unification of SU(2)L × SU(2)R × U(1)B−L

In the minimal left-right model based on SU(2)L×SU(2)R×U(1)B−L, the discrete symmetry

ensuring identical SU(2)L and SU(2)R gauge couplings is put in by hand. In this work

we use SU(4)W to unify the left-right symmetries and interpret the origin of the parity

invariance as the residual discrete symmetry from the symmetry breaking of the unification

group. Since we intend to truly unify the left-right gauge groups, it is not possible to fill all

the matter fields into SU(4)W multiplets without introducing mirror fermions because of

the different U(1)B−L charge assignments for quarks and leptons. So we opt for the OGSB

mechanism with partial unification for matter fields.

Starting from the five-dimensional SU(3)C × SU(4)W gauge theory, we can choose

the following Z2 matrix representations for P and P ′ in the adjoint representation of

SU(3)C × SU(4)W :

P = diag(+1,+1,+1) ⊗ diag(+1,+1,+1,+1) , (3.1)

P ′ = diag(+1,+1,+1) ⊗ diag(+1,+1,−1,−1) . (3.2)

The gauge symmetry SU(4)W is broken by boundary conditions to SU(2)L×SU(2)R×U(1)X
on the boundary O′ brane while is preserved in the bulk and on the O brane. Consequently,

the parity assignments for V and Σ are

V (15) = (3,1)
(+,+)
0

⊕ (1,3)
(+,+)
0

⊕ (2, 2̄)
(+,−)
2

⊕ (2̄,2)
(+,−)
−2

⊕ (1,1)
(+,+)
0

, (3.3)

Σ(15) = (3,1)
(−,−)
0

⊕ (1,3)
(−,−)
0

⊕ (2, 2̄)
(−,+)
2

⊕ (2̄,2)
(−,+)
−2

⊕ (1,1)
(−,−)
0

. (3.4)

We place the lepton sector on the O brane while keep the quark sector on the O′ brane.

This means that only the leptons are filled into SU(4)W multiplets

(4) : L = diag (νL , eL , e
c
L ,−νc

L) . (3.5)

Here φc
L≡(φc)L and the minus sign conforms to our choice of Qa = (νc

L, e
c
L) in SU(2)R

representations 2̄ and being related to its conjugate by Qa = (ecL,−νc
L) through the fully

– 4 –
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antisymmetric tensor Qa = ǫabQb. From the SU(4)W fundamental representation and

its proper normalization follows that the U(1)X charge assignment of the fundamental

representation can be written as

YX = diag (−1,−1, 1, 1) . (3.6)

From this we can identify U(1)X as U(1)B−L. The normalization of the gauge group

U(1)B−L reads

TB−L =

√
2

2

YB−L

2
. (3.7)

From the normalization condition follows the relation between the gauge couplings of

SU(2)L × SU(2)R × U(1)B−L and SU(4)W

g2
B−L =

1

2
g2
4 , g2

L = g2
R = g2

4 , (3.8)

which holds at the SU(4)w unification scale. Hence we can predict the tree-level weak

mixing angle as

sin2 θW =
g2
B−L

g2
L + 2g2

B−L

=
1

4
. (3.9)

To induce Yukawa couplings for the SU(4)W multiplet leptons, we can introduce bulk

Higgs fields in the SU(4)W antisymmetric representation Φab(6̄) and symmetric represen-

tations ∆i
ab(10) and ∆i

ab(10).1 In four dimensions there are eight N = 1 chiral multiplets

Φ, (Φc), ∆i, (∆c)i (i = 1, 2, 3). We assign the boundary conditions for the Higgs fields as

ηΦ = 1, η′Φ = −1, η∆1 = 1, η′∆1 = −1, η∆i = 1, η′∆i = 1 (i = 2, 3) (3.10)

The parities of the Higgs fields in terms of the SU(2)L × SU(2)R ×U(1)B−L representation

are given by

Φ(6̄) = (1,1)
(+−)
2

⊕ (1,1)
(+−)
−2

⊕ (2̄, 2̄)
(++)
0

,

∆1(1̄0) = (3̄,1)
(+−)
−2

⊕ (1, 3̄)
(+−)
2

⊕ (2̄, 2̄)
(++)
0

,

∆2(1̄0) = (3̄,1)
(++)
−2

⊕ (1, 3̄)
(++)
2

⊕ (2̄, 2̄)
(+−)
0

,

∆3(10) = (3,1)
(++)
2

⊕ (1,3)
(++)
−2

⊕ (2,2)
(+−)
0

. (3.11)

Under these parity assignments the conjugate chiral fields (Φc), (∆c)i (i = 1, 2, 3) have

no zero modes and irrelevant to the low energy phenomenology. The zero modes form two

SU(2)L and SU(2)R triplets with opposite U(1)B−L quantum numbers and two bi-doublets

(2, 2) with vanishing U(1)B−L quantum numbers which give exactly the Higgs field contents

of the supersymmetric left-right model.

1If we introduce only Φab(6̄) to give charged lepton masses, the allowed Yukawa couplings have the form

y[ij]L
i
[aL

j

b]
Φ[ab] with index ab( and ij) being antisymmetric. Such Yukawa couplings lead to me = 0 and

mµ = mτ , which is unrealistic. Note that it is also possible to introduce four Higgs hypermultiplets in the

symmetric representation ∆i
ab(10) and ∆i

ab(10) in this scenario.

– 5 –
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As the leptons are fitted into the SU(4)W multiplets, we can write down their Yukawa

interactions with the bulk Higgs fields. Since the leptons are placed on the O brane, it is

obvious that they are invariant under P transformation. The transformation property for

the leptons under P ′ is determined by the requirement that the operators on the O brane

must transform covariantly under P ′, otherwise the gauge symmetry preserved at y = 0

will not be preserved at the y = πR brane. From the kinetic terms of the leptons we can

get the transformation property of the leptons under P ′ as

P ′ : (νL eL ecL − νc
L) → ±(+,+,−,−) . (3.12)

The transformation of the Yukawa interactions under P ′ is

P ′ :
∑

ij

YijL
a
[iL

b
j]Φ[ab](6̄) = − , (3.13)

where (i, j) is antisymmetric, and

P ′ :
∑

ij

YijL
a
iL

b
j∆

1
ab(10) = − , (3.14)

P ′ :
∑

ij

YijL
a
iL

b
j∆

2
ab(10) = + , (3.15)

where i, j are the family indices. So we can write the Yukawa interactions as

L5 =

∫

d2θ
√
πR

[

1

2
{δ(y) − δ(y − πR)}

∑

ij

(

Y 1
[ij]L

a
iL

b
jΦ

1
[ab] + Y 2

ijL
a
iL

b
j∆

1
ab

)

+
1

2
{δ(y) + δ(y − πR)}

∑

ij

Y 3
ijL

a
iL

b
j∆

2
ab

]

. (3.16)

After integrating out the fifth dimensional coordinate, we get the Yukawa couplings in

four dimensions

L4 =

∞
∑

n=0

∫

d2θ
∑

ij

[

1√
2n,0

(

y1[ij]L[iL
c
j]φ

(2n)
1 + y2ijLiL

c
jφ

(2n)
2

+ y3ijLiLj∆
(2n)
1 + y4ij(Lc

i )L
c
j∆

(2n)
2

)

]

+ h.c. , (3.17)

where the lepton SU(4)W multiplets are decomposed as 4 = (L Lc), the bi-doublet Higgs

fields φ1 and φ2 belong to the (2, 2)0 representations of SU(2)L × SU(2)R × U(1)B−L, and

the triplets ∆1 and ∆2 belong to (3, 1)−2 and (1, 3)2 representations. The interactions

for the zero modes of the Higgs fields are the Yukawa couplings in the supersymmetric

left-right model. Similarly, we can write the couplings of the lepton multiplets with the

vector multiplet V a and the chiral multiplet Σa.

Supersymmetry breaking can be realized via the Scherk-Schwarz mechanism through

the boundary conditions [21–23]. It is well known that N = 1 supersymmetry in five

dimensions possesses an SU(2)R global R-symmetry under which the gauginos from the

– 6 –
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vector multiplets (λ1, λ2) and complex scalars (φ, φc†) from hypermultiplets form SU(2)R
doublets. The non-trivial twist T for translation with respect to SU(2)R R-symmetry can

be written as [22, 23]

T = exp (−2πiσ2α) , (3.18)

with orbifolding projection

P ′ = σ3 . (3.19)

Besides, the symmetric Higgs bosons ∆i(10)(i=1,2,3) have a SU(3) flavor symmetry. Also,

the consistent relation between the translation and the orbifolding is

TP ′T = P ′ , (3.20)

where P ′ is the reflection according to Z2(or Z
′
2), and T is the translation

Tφ(xµ, y) = φ(xµ, y + 2πR) . (3.21)

We denote the translation operator T corresponding to the global SU(3) flavor symmetry

as follows

T = exp

(

2πi
∑

a

T aθa

)

, (3.22)

where T a are SU(3) generators. From formula (3.20), we obtain

{

T aθa, P ′
}

= 0 . (3.23)

For the following non-trivial 3 × 3 matrix

P ′ =

(

±1 0

0 σ3

)

, (3.24)

the most general form of T can be described by

T = exp
[

2πi(γ0T
0 + γ1T

1 + γ2T
2)
]

, (3.25)

with

T 0 =







0 0 0

0 0 1

0 1 0






, T 1 =







0 0 0

0 0 −i
0 i 0






, (3.26)

T 2 =







0 0 −i
0 0 0

i 0 0






(P ′

11 = 1) or T 2 =







0 −i 0

i 0 0

0 0 0






(P ′

11 = −1) . (3.27)

– 7 –
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The parameter γ0 can be rotated away by the residue global symmetry, so the twist for

flavor SU(3) compatible with non-trivial P ′ can be written as

T = exp
[

2πi(γ1T
1 + γ2T

2)
]

. (3.28)

In case of the SU(3) flavor symmetry for ∆1(1̄0),∆2(1̄0),∆3(10), the relative parity as-

signments under P and P ′ are nontrivial with

P =

(

1 0

0 σ3

)

, P ′ =

(

−1 0

0 σ3

)

. (3.29)

So the twist boundary condition T compatible with both are

T = exp
(

2πiγ1T
1
)

. (3.30)

The most general boundary conditions for the fields are

AM (xµ, y + 2πR) = AM (xµ, y) , (3.31)

σ(xµ, y + 2πR) = σ(xµ, y) , (3.32)
(

λ1

λ2

)

(xµ, y + 2πR) = e−2πiασ2

(

λ1

λ2

)

(xµ, y) , (3.33)

(

φ

φc†

)

(xµ, y + 2πR) = e−2πiασ2

(

φ

φc†

)

(xµ, y) , (3.34)

(

δ̃1 δ̃2 δ̃3
δ̃c†
1 δ̃c†

2 δ̃c†
3

)

(xµ, y + 2πR) =

(

δ̃1 δ̃2 δ̃3
δ̃c†
1 δ̃c†

2 δ̃c†
3

)

e2πiγ1T 1
(xµ, y) , (3.35)

(

δ1 δ2 δ3
δc†
1 δc†

2 δc†
3

)

(xµ, y + 2πR) = e−2πiασ2

(

δ1 δ2 δ3
δc†
1 δc†

2 δc†
3

)

e2πiγ1T 1
(xµ, y) . (3.36)

Here we denote the components of chiral supermultiplets ∆i(10) as (δi(10), δ̃i(10)) with

their conjugate chiral supermultiplets ∆ic(1̄0) as (δic(10), δ̃ic(10)). The complex scalar

components for hypermultiplets (Φ(6),Φc(6̄)) are denoted as (φ, φc†).

We now consider the modes expansion of the fields with respect to the previous Scherk-

Schwarz type boundary conditions. For simplicity, we write explicitly only the relative P

and P ′ parity assignments under orbifolding projections
(

λ
(++)
1

λ
(−−)
2

)

(xµ, y) =

∞
∑

n=0

e−iασ2y/R







√

1

2δn,0πR

(

λ
(++)
1

)(2n)
(xµ) cos 2ny

R
√

1
πR

(

λ
(−−)
2

)(2n+2)
(xµ) sin (2n+2)y

R






, (3.37)

(

φ(++)

(

φc†
)(−−)

)

(xµ, y) =

∞
∑

n=0

e−iασ2y/R





√

1

2δn,0πR
φ

(2n)
1++(xµ) cos 2ny

R
√

1
πRφ

(2n+2)
2−− (xµ) sin (2n+2)y

R



 , (3.38)
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(

δ̃+−
1 δ̃++

2 δ̃−−
3

δ̃c†−+
1 δ̃c†−−

2 δ̃c†++
3

)

(xµ, y) =

∞
∑

n=0







(

δ̃1

)+−

(2n)

(

δ̃2

)++

(2n)

(

δ̃3

)−−

(2n+2)
(

δ̃c†
1

)−+

(2n+2)

(

δ̃c†
2

)−−

(2n+2)

(

δ̃c†
3

)++

(2n)






eiγ1T 1y/R(xµ, y) , (3.39)

(

δ+−
1 δ++

2 δ−−
3

δc†−+
1 δc†−−

2 δc†++
3

)

(xµ, y) =

∞
∑

n=0

e−iασ2y/R





(δ1)
+−
(2n) (δ2)

++
(2n) (δ3)

−−
(2n+2)

(

δc†
1

)−+

(2n+2)

(

δc†
2

)−−

(2n+2)

(

δc†
3

)++

(2n)



 eiγ1T 1y/R(xµ, y) ,

(3.40)

in which we represent the symmetric ∆i(1̄0)(i=1,2,3) by its (3̄,1)−2 modes. The zero

modes from the orbifold projection can get mass terms from the previous Scherk-Schwarz

boundary conditions

L = − α

2R

∑

a

(λa
0λ

a
0+h.c.)− α

R

(

∆̃1
L∆̃2

L+∆̃1
R∆̃2

R+h.c.
)

−α2

R

(

Tr
(

Φ†
1Φ1

)

+Tr
(

Φ†
2Φ2

))

−
(

α2

R2
+
γ2

R2

)

(

Tr
(

∆1†
L ∆1

L

)

+ Tr
(

∆2†
L ∆2

L

)

+ Tr
(

∆1†
R ∆1

R

)

+ Tr
(

∆2†
R ∆2

R

))

+
2αγ

R2

(

∆1
L∆2

L + ∆1
R∆2

R + h.c.
)

. (3.41)

Here triplets ∆1
L

[

(3̄,1)(−2)

]

,∆1
R

[

(1, 3̄)(2)
]

are zero modes from ∆2(1̄0) while triplets

∆2
L

[

(3,1)(2)
]

,∆2
R

[

(1,3)(−2)

]

from ∆3(10). The bi-doublets Φ1(2̄, 2̄)0 are zero modes from

Φ(6̄) while Φ2(2̄, 2̄)0 from ∆1(1̄0). The gauge index a runs over the left-right gauge group

SU(3)c, SU(2)L, SU(2)R, and U(1)B−L. The continuous parameters α and γ can be chosen

to be α, γ ≪ 1 [23] or α, γ ∼ O(1) [22]. We chose the former case with α, γ ≪ 1. If

the scale of the supersymmetry breaking soft mass terms α/R and γ/R is chosen to be at

the order of the electroweak scale, we can get the relation MS < MR. Otherwise if the

scale for the supersymmetry breaking soft mass terms is higher than MR which will not

explain the gauge hierarchy problem, MR < MS is also possible. In our case the matter

contents are placed at the orbifold fix point so that no tree-level mass terms are generated

through orbifolding. However, the sfermions masses can be radiatively generated through

renormalization group equations below the compactification scale. Since such interactions

are almost flavor universal, the supersymmetric flavor problems can be solved.There is a lot

of freedom to tune the complicate Higgs potential to break the left-right symmetry down

to U(1)Q directly. In supersymmetric left-right models, sneutrinos can couple to the Higgs

sector which leads to spontaneously broken R-parity if such sneutrino doublets acquire

vacuum expectation values. The couplings between the triplets and sneutrino which arise

from the Yukawa superpotential are rather arbitrary. Detailed discussion on Higgs poten-

tial coupled to sneutrino doublets can be found in ref. [2, 20] which will not be discussed

here. In SUSY left-right cases, R-parity is automatically conserved.
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The chiral anomaly cancellation in OGSB cases has been studied in [25–28]. In our

case with S1/(Z2 × Z2) OGSB, if the gauge anomaly in four dimensions is cancelled, the

five-dimensional fix-point gauge anomaly can be cancelled by introducing appropriate bulk

Chern-Simons terms with jumping coefficients. At the fix point O, the gauge anomaly from

the lepton 4 representation and the bulk Higgsinos in representation 6̄,10,10 are cancelled

by the five-dimensional Chern-Simons terms. Such Chern-Simons terms also cancel the

quark contribution on theO′ brane. At the fix pointO′ we can see that the four-dimensional

anomaly associated with the bulk Higgsinos is cancelled automatically although the bulk

fermion contributions to the anomaly associated with the unbroken gauge group add up.

Alternative models. It is also possible to put the leptons into the bulk by introducing

mirror leptons and placing quarks on the broken symmetry O′ brane. We can introduce

bulk hypermultiplets (FL, FR) in the (1,4) representation and (F c
L, F

c
R) in the (1, 4̄) rep-

resentation. These multiplets are filled as:

FL = (LL,XL) , FR = (Xc
L, L

c
L) , (3.42)

F c
L = (L̄L, X̄L) , F c

R = (X̄c
L, L̄

c
L) , (3.43)

where Xc
L, L̄L, X̄

c
L(XL, L̄

c
L, X̄L)are left (right) handed mirror leptons. LL and Lc

L are left

and right handed leptons in minimal left right model, respectively. Lepton doublets in the

minimal left-right model can be obtained by introducing the following parity assignments:

ηFL
= 1 , η′FL

= 1 , ηFR
= +1 , η′FR

= −1 . (3.44)

Lepton SU(2)L doublets survive projections from FL while lepton SU(2)R doublets from

FR. We can see from the charge assignments of the bulk hypermultiplets that the tree level

weak mixing angle sin2 θW = 0.25 still holds in this scenario.

The Higgs sector can be placed in the bulk or localized on the broken symmetry O′

brane. In the latter case, we need two bi-doublets (2,2,0), two SU(2)L triplets (3,1,±2)

and two SU(2)R triplets (1,3,±2) in left-right gauge group SU(2)L × SU(2)R × U(1)B−L

representations. The case of the bulk Higgs is almost identical to that of the previous case,

so we do not discuss it in detail.

It is also possible to put quarks in the bulk while locate leptons on the O′ brane. Then

we introduce mirror quarks Q̄, Q̄c to fill SU(3)c × SU(4)W representations as:

(3,4) = diag(UL , Q̄
c
L) , (3̄,4) = diag(Q̄ , U c

L) , (3.45)

where U c
L = (dc

L,−uc
L) denote the 2 representations in SU(2)R. In this case the U(1)B−L

charge for SU(4)W fundamental representation reads

YB−L = diag

(

1

3
,
1

3
,−1

3
,−1

3

)

, (3.46)

which is normalized with respect to the SU(4)W generator TB−L as:

TB−L =
3
√

2

2

YB−L

2
. (3.47)

– 10 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
5

From the gauge coupling relations

gB−L =
3
√

2

2
g4 , gL = gR = g4 , (3.48)

we can get the tree level weak mixing angle

sin2 θW =
g2
B−L

g2
L + 2g2

B−L

= 0.45 , (3.49)

which is not acceptable as a low-energy unification model.

4 Gauge coupling running and unification scale

In this section we discuss the renormalization group equation (RGE) running of the gauge

couplings in the orbifold breaking case. We consider only the simplest scenario without

mirror fermions. At the weak scale our inputs are [19]

MZ = 91.1876 ± 0.0021 , (4.1)

sin2 θW (MZ) = 0.2312 ± 0.0002 , (4.2)

α−1
em(MZ) = 127.906 ± 0.019 , (4.3)

α3(Mz) = 0.1187 ± 0.0020 , (4.4)

which fix the numerical values of the standard U(1)Y and SU(2)L couplings at the

weak scale

α1(MZ) =
αem(MZ)

cos2 θW
= (98.3341)−1 , (4.5)

α2(MZ) =
αem(MZ)

sin2 θW
= (29.5718)−1 . (4.6)

The RGE running of the gauge couplings reads

d αi

d lnE
=

bi
2π
α2

i , (4.7)

where E is the energy scale and bi are the beta functions. At the scale of the SU(2)R gauge

boson mass MR, the left-right SU(3)C × SU(2)L × SU(2)R × U(1)B−L symmetry breaks

to the SM gauge group. From the symmetry breaking chain and the normalization of the

gauge field (gB−LYB−L/2)A
B−L
µ in the kinetic term, we obtain the relation

1

e2
=

1

g2
2L

+
1

g2
2R

+
1

g2
B−L

, (4.8)

from which we can calculate the coupling gB−L at the scale MR.

Note that in non-supersymmetric left-right models neutrino masses arise by a Type I or

Type II see-saw mechanism. In this case an O(TeV) mass is unnatural for theWR gauge bo-

son due to the mixing term Tr(Φ∆LΦ†∆†
R). In the supersymmetric left-right model such a

mixing term is not allowed by supersymmetry and thus a TeV-scale WR mass is realistic [20].

– 11 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
5

We know that we need two bi-doublets to give tree-level Cabibbo-Kobayashi-Maskawa

(CKM) mixings in supersymmetric left-right models. Thus, in the low energy limit, the

electroweak symmetry breaking Higgs sector is non-minimal, containing two bi-doublets.2

The corresponding supersymmetric extension (below MR) also contains two bi-doublets.

Assuming that the SU(2)R gauge boson mass MR is in the range 1 TeV < MR < MC

(where MC is the compactification scale) and the mass of its superpartner falls in the range

200 GeV < MS < MC , we have two possibilities:

(i) One possibility is that MS < MR. In this case α, γ ≪ 1 with α/R, γ/R at the

order of the electro-weak scale. Then the beta functions for the gauge couplings of

U(1)Y ,SU(2)L,SU(3)c are given by

(b1, b2, b3) =

(

22

3
,−8

3
,−7

)

for MZ < E < MS , (4.9)

(b1, b2, b3) = (12, 2, 3) for MS < E < MR , (4.10)

while for
√

2U(1)B−L,SU(2)L,SU(2)R, and SU(3)c they are given by

(b1, b
L
2 , b

R
2 , b3) = ( 8, 6, 6,−3) for MR < E < MC . (4.11)

(ii) The other possibility is MR < MS . In this case α/R, γ/R are of order O(10) TeV and

the gauge hierarchy problem is not solved by the high energy supersymmetry. Then

we have

(b1, b2, b3) =

(

22

3
,−8

3
,−7

)

for MZ < E < MR , (4.12)

(b1, b
L
2 , b

R
2 , b3) =

(

10

3
,−4

3
,−4

3
,−7

)

for MR < E < MS , (4.13)

(b1, b
L
2 , b

R
2 , b3) = (8, 6, 6,−3) for MS < E < MC . (4.14)

Above the SUSY left-right scale the RGE running of the gauge couplings receives contri-

butions from KK modes

α−1
i (E) = α−1

i (MR) +
bi
2π

ln

(

MR

E

)

+
bi,e
2π

k
∑

n=1

ln

(

2n

ER

)

Θ

(

E − 2n

R

)

+
bi,o
2π

k
∑

n=0

ln

(

2n+ 1

ER

)

Θ

(

E − 2n+ 1

R

)

. (4.15)

Here Θ(x) is the step function defined as Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. The

beta functions corresponding to the even and odd KK modes at 1-loop are

(bB−L,e, bB−L,o) = (12, 0) , (4.16)

2Due to the left-right symmetry, the left-handed triplets have the same masses as the right-handed

triplets which are at the order of the MR scale. On the other hand, the vacuum expectation values (VEVs)

for the left-handed triplets are small because such VEVs will break SU(2)L.

– 12 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
5

(

bL2,e, b
L
2,o

)

= ( 8, 4) , (4.17)
(

bR2,e, b
R
2,o

)

= ( 8, 4) , (4.18)
(

bR3,e, b
R
3,o

)

= (−6, 0) , (4.19)

that is, the RGE running of the SU(2)L and SU(2)R gauge couplings are identical.

The existence of the symmetry breaking O′ brane allows the localized kinetic terms for

the unbroken gauge group SU(2)L×SU(2)R×U(1)B−L, which spoil the SU(4)W unification.

The most general form of the gauge kinetic term is given by

S =

∫

d4xdy

(

1

4g2
5

FMNF
MN + δ(y)

1

4ḡ2
FµνF

µν + δ

(

y − πR

2

) 2
∑

i=0

1

4g̃2
i

FµνF
µν

)

(4.20)

After integrating out the higher modes, the gauge couplings of the zero modes are

1

g2
i

=
πR

2g2
5

+
1

ḡ2
+

1

g̃2
i

, (4.21)

where g0 =
√

2gB−L, while g1, g2 correspond to g2L, g2R coupling respectively. The term

ḡ2 is irrelevant because it preserves SU(4)W unification and will not affect the tree-level

weak mixing angle. We can assume that the bulk and brane kinetic terms have comparable

strength [16] at a cut-off scale Λ (higher than or equal to the unification scale MU ). Since

g2
5 has mass dimension, we can estimate its strength to be g2

5Λ at the cut-off scale, which

implies g2
5Λ ∼ g̃i

2. We can see that at tree level the SU(4)W violating term is suppressed

by MC/Λ and hence the effects can be neglected if MC ≪ Λ. Besides, it is natural to set

such localized gauge kinetic terms to zero at tree level in a fundamental theory. Then for

a weakly coupled theory, such localized kinetic terms can only arise at loop level and thus

highly suppressed.

The one-loop corrections to the weak mixing angle come from the SU(4)W violating

effects but not from the SU(4)W conserving effects. For the energy scale in the range

2NMC < E < (2N + 1)MC with N ≫ 1, we can estimate the RGE running by summing

over the contribution of the KK modes. Using Stirling’s approximation

ln (N !) ≃ N lnN −N +
1

2
ln (2πN) , (4.22)

and

ln [1 × 3 × · · · × (2N − 1)] = ln [(2N)!] −N ln 2 − ln(N !)

≃
(

N +
1

2

)

ln 2 +N lnN −N , (4.23)

we can write

α−1
i (E)≃α−1

i (MR)+
bi
2π

ln

(

MR

E

)

− 1

4π
(bi,o+bi,e)

[

E

MC
−ln 2

]

+
bi,e
4π

ln

(

πE

2MC

)

(4.24)

Thus, after the KK modes contributions are included, the RGE running of the gauge

couplings are proportional to N = E/(2MC ), which is a power law running (this agrees with
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the results of [24]). The relative running of SU(2)L (identical to SU(2)R) and U(1)B−L is not

affected by the SU(4)W conserving power-law running, instead this running is logarithmic

due to SU(4)W violating effects. In OGSB cases, it is general to have

bB−L,e + bB−L,o = bL,e + bL,o = bR,e + bR,o , (4.25)

which also holds in our case. Due to the universally occurring bo+be term, we can replace be
with −bo in the relative running between the gauge couplings. The running of the minimal

left-right gauge couplings is given by

1

g2
i

(MR) ≃ 1

g2
∗

(MU ) +
a

16π2

[(

MU

MC

)

− ln 2

]

+
b̃i

8π2
ln
MU

M ′
C

+
c̃i

8π2
ln
M ′

C

MR
(4.26)

where M ′
C = 2MC/π, the coefficient a which is universal and b̃i are given in our case by

a = bi,o + bi,e , b̃i = bi −
1

2
bi,e , c̃i = bi . (4.27)

Then the Weinberg angle for non-SUSY cases is

sin2 θW (MZ) =
1

4
− αem(MZ)

[

b̃1 − b̃2
4π

ln
MU

M ′

C

+
c̃1 − c̃2

4π
ln
M ′

C

MR

+
d1 − 3d2

8π
ln
MR

MZ

]

(4.28)

where (d1, d2) are the one-loop beta functions for U(1)Y ,SU(2)L in the energy range be-

tween MR and MZ . The Weinberg angle for SUSY cases is given by

sin2 θW (MZ) =
1

4
− αem(MZ)

[

b̃1 − b̃2
4π

ln
MU

M ′
C

+
c̃1 − c̃2

4π
ln
M ′

C

MR

+
d1 − 3d2

8π
ln
MR

MS
+
e1 − 3e2

8π
ln
MS

MZ

]

, (4.29)

where (d1, d2) and (e1, e2) denote the one-loop beta functions for U(1)Y and SU(2)L for

MR > E > MS and MS > E > MZ , respectively.

From the above formulas, we can estimate the unification scale once the compactifica-

tion scale M ′
C is specified. In fact, we can obtain the unification scale more precisely by

taking into account each KK-mode contribution step by step. In SUSY left-right unification

cases, we can see from the beta functions that b̃i = 2 is universal for SU(2)L,SU(2)R and

U(1)B−L. It means that there is no relative running between the three gauge couplings.

However, eq. (4.24) is not valid if the unification scale MU ∼ NMC satisfies N ∼ O(1) with

which the summation approximation eq. (4.22) is not valid. Thus, we anticipate the unifi-

cation occurs at the order of the compactification scale if we require that the gauge coupling

at unification scale be not strong coupled (weakly coupled unification). We can also iden-

tify the unification scale MU as the cut off scale Λ if the gauge coupling would be strongly

coupled at the unification scale. We know that MS is fixed to be within several hundreds

GeV in order to give an explanation of the gauge hierarchy problem by supersymmetry

(We will not discuss the non-interesting case of high scale supersymmetry with MS > MR

here). The detailed numerical calculations show that there is a fairly large parameter space

– 14 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
5

for the values of MR and MC in which the weakly coupled unification is possible. We find

that the compactification scale MC is required to be larger than 150 TeV in order to get

successful weakly coupled gauge coupling unification. While the larger the MC , the lower

the possible value of MR that is allowed by the weakly coupled gauge coupling unification.

For example, the parameter MR is required to be larger than 70 TeV with MC = 150 TeV.

While if MC = 200 TeV, the allowed MR can be as low as 40 TeV. Fixing the left-right

scale, which is identified as the SU(2)R gauge boson masses, to MR = 100 TeV, the sfermion

mass MS = 600 GeV, and the compactification scale MC = 200 TeV, we obtain

α−1
B−L(MR) = 28.810705 , α−1

L (MR) = α−1
R (MR) = 28.742994 , (4.30)

and a weakly coupled unification scale

MU = 323.5 TeV. (4.31)

Because the compactification scale is relatively high (higher than 150 TeV), the low-energy

effective theory is the supersymmetric left-right model.

If the compactification scale MC is lower than 150 TeV, strongly coupled unification

can occur. For example, if we chose TeV-scale extra-dimension with MC = 5.0 TeV while

MR = 2.0 TeV, the strongly coupled unification scale (identify as the cut off scale Λ) is

MU ∼ 30MC ∼ 150 TeV. We can see that MC ∼ 0.01Λ so that the uncertainties from brane

kinetic terms are very small.

In non-SUSY cases, the low-energy left-right model contains one bi-doublet, one SU(2)L
triplet and one SU(2)R triplet. The bulk Higgses contain two 10 dimensional representa-

tions with parity assignments η = 1 and η′ = ±1.3 We obtain the following beta functions

for the gauge couplings of SU(2)L and the normalized U(1)B−L:

(b1, b2, b3) = ( 7,−3,−7) for MZ < E < MR , (4.32)

(b1, b
L
2 , b

R
2 , b3) =

(

7

3
,−7

3
,−7

3
,−7

)

for MR < E < MC . (4.33)

The beta functions of the KK modes are

(bB−L,e, bB−L,o) = (1,−13) , (4.34)

(bL2,e, b
L
2,o) = (−6,−6) , (4.35)

(bR2,e, b
R
2,o) = (−6,−6) , (4.36)

(bR3,e, b
R
3,o) = (−21/2, 0) . (4.37)

The beta functions of SU(2)R are the same as those of SU(2)L due to the left-right

symmetry.

In the non-SUSY case, the power law running with negative beta functions drive the

gauge couplings asymptotically free. We assume here the unification scale MU is less than

the cut off scale Λ. In this case, there are still some allowed parameter space for the values

3As noted previously, we cannot introduce a 6 representation Higgs only, because the low energy mass

spectrum is not acceptable.
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of MC and MR which admit gauge coupling unification. In fact, MC is allowed to be as low

as 3.0 TeV with MR = 2.2 TeV (although it is not natural in non-SUSY case to get such

low MR). However, the numerical calculations indicate that the successful gauge coupling

unification requires the compactification scale MC to be lower than 8.0 TeV. For MC higher

than 8.0 TeV, the SU(2)L and U(1)B−L gauge couplings tend to be zero asymptotically

without intersection. Choosing MR = 3.0 TeV and MC = 5.0 TeV, we obtain

αB−L(MR) = 31.6011 , αL(MR) = αR(MR) = 31.2399 , (4.38)

and a unification scale much lower than previously

MU = 5.2473 TeV . (4.39)

In this scenario the relatively low left-right and compactification scales allow for a

unification scale of several TeV. Although low MR scenario needs fine-tunning, it is

however possible. Such low-energy unification may have numerous interesting phenomeno-

logical consequences.

The generic phenomenology of our model is similar to that of any other theories with

an extra dimension and thus is not discussed here. But our model has some additional

phenomenological features. The scenario predicts the existence of doubly charged gauge

bosons at several TeVs which may be within the reach of the LHC. These heavy gauge

bosons have gauge couplings to leptons while have no couplings to quarks. Since the (+,−)

modes vanish on the O′ brane, they can only have derivative couplings to quarks. But two

quark interactions with AX
µ are forbidden because of non-matching quantum numbers.

From the mode expansion of the gauge couplings to leptons, which is similar to that of the

Yukawa couplings, we can see that the doubly charged heavy gauge boson A−− can couple

to two charged leptons. It can decay into electron pairs or a pair of SU(2)L and SU(2)R
charged gauge bosons W−

1 and W−
2 . The coupling of the first KK excitations of the real

scalar Aa
5 with the leptons can also give couplings of the charge-two real scalar to charged

lepton pairs. We know that φ3 is non-vanishing on the O′ brane because it has parity

(−,+) under projection. Similar to heavy gauge boson cases, its couplings to two quarks

are forbidden because of its non-matching quantum numbers. Our model also have SU(2)L
singlets charged scalars with B−L = ±2. Such scalars can decay into lepton pairs like νeµ.

5 SU(4)W breaking to SU(2)L × U(1)3R × U(1)B−L

As we demonstrated it is advantageous to break the SU(4)W to the minimal left-right

model via orbifolding, and the corresponding OGSB chain for SU(4)W can be fairly rich.

In this section we show that we can break SU(4)W to SU(2)L × U(1)3R × U(1)B−L which

also leads to interesting phenomenology.

In this case, our starting point is again the five dimensional N = 1 supersymmetric

SU(3)C × SU(4)W gauge symmetry. First, we consider the parity assignments in term of

the fundamental representation of SU(3)C × SU(4)W :

P = diag(+1,+1,+1) ⊗ diag(+1,+1,+1,−1) ,

P ′ = diag(+1,+1,+1) ⊗ diag(+1,+1,−1,−1) . (5.1)
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Boundary conditions break N = 2 supersymmetry to N = 1 in four dimensions. The

SU(3)C × SU(3)W × U(1)1 gauge symmetry is preserved at the O brane while it is broken

to SU(3)C × SU(2)L × SU(2)R × U(1)B−L at the O′ brane.4 The zero modes preserve the

SU(3)C × SU(2)L × U(1)3R × U(1)B−L gauge symmetry, which can be seen through the

form of corresponding generators in SU(4)W .

We introduce two N = 2 Higgs hypermultiplets in SU(3)C × SU(4)W symmetric rep-

resentations in the bulk. These contain the N = 1 chiral supermultiplets Φ1(1, 10) and

Φ2(1, 10) as well as their conjugate chiral fields. The parity assignments for the Higgs

sector read

ηΦi = 1 , η′Φi = −1 . (5.2)

This leads to the following parity assignments for the Higgs hypermultiplets

Φi =











(+,−) (+,−) (+,+) (−,+)

(+,−) (+,−) (+,+) (−,+)

(+,+) (+,+) (+,−) (−,−)

(−,+) (−,+) (−,−) (+,−)











,

(Φi)c =











(−,+) (−,+) (−,−) (+,−)

(−,+) (−,+) (−,−) (+,−)

(−,−) (−,−) (−,+) (+,+)

(+,−) (+,−) (+,+) (−,+)











. (5.3)

The SU(2)L doublets Hu and Hd arise from the bulk zero modes of Φi, and two SU(2)L
singlets T1 and T2 from that of (Φi)c.

Fermions can be located at the fix points O or O′. Since at O the gauge symmetry is

SU(3)C × SU(3)W ×U(1)1, if we place all the matter on the O brane, we have to introduce

mirror fermions for quarks similarly to the 3-3-1 model. Thus, the most economical way

is to locate all matter at the O′ brane (although it is also possible to put leptons on the

O brane while quarks are on O′ brane). Since at O′ only the SU(2)L × SU(2)R ×U(1)B−L

gauge symmetry is preserved, we can start with a left-right gauge invariant Lagrangian

and then integrate out the heavy modes to get the SU(2)L ×U(1)3R ×U(1)B−L Lagrangian

in four dimension.

The matter content at the O′ brane can be that of the minimal left-right model:

(3,2,1) : QL =

(

uL

dL

)

, (3̄,1, 2̄) : Qc
L =

(

uc
L

dc
L

)

, (5.4)

(1,2,1) : LL =

(

νL

eL

)

, (1,1, 2̄) : Lc
L =

(

νc
L

ecL

)

. (5.5)

4In fact, various combinations of U(1) Abelian groups may remain, since the inner automorphism OGSB

will not reduce the rank of the groups while Zn orbifolding [11]. For example, the U(1)1 and the diagonal

components T 8 of SU(3)W can be recombined into U(1)B−L and U(1)3R.
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In terms of SU(2)L × SU(2)R × U(1)B−L representations the Higgses can be written as:

Φ1(10) =

(

A2×2 φ2×2

φ2×2 B2×2

)

, Φ2(1̄0) =

(

A′
2×2 φ′2×2

φ′2×2 B′
2×2

)

. (5.6)

(Φ1)c(10) =











A1 S1 D11 D12

S1 A2 D21 D22

D11 D21 A3 T1

D12 D22 T1 A4











, (Φ2)c(10) =











B1 S2 E11 E12

S2 B2 E21 E22

E11 E21 B3 T2

E12 E22 T2 B4











. (5.7)

The parity of the brane fields are determined by the requirement that all the gauge in-

variant operators on the O′ brane must transform covariantly under P parity which is the

consequence of the identification of the y = πR/2 and y = −πR/2 branes. From the kinetic

terms and parity assignments follows the parity of the matter content on the O′ brane:

P : QL = ±(+,+) , P : LL = ±(+,+) ,

P : Qc
L = ±(+,−) , P : Lc

L = ±(+,−) . (5.8)

From the parity properties of gauge invariant operators on the O′ brane (which we do not
list here) the Yukawa couplings of the bulk Higgses to the brane fermions can be obtained

L5 =

∫

d2θ

√
πR

2
(5.9)

×







[

δ

(

y−πR

2

)

±δ
(

y+
πR

2

)]

∑

ij

(

Y 1
ijǫ

ab(QL)i
a (Qc

L)
j

c (φ)c
b+Y

2
ijǫ

bc(QL)i
a(Qc

L)j
c(φ

′)a
b

)

+
1

2

[

δ

(

y−πR

2

)

±δ
(

y+
πR

2

)]

∑

ij

(

Y 3
ijǫ

ab(LL)i
a(Lc

L)j
c(φ)c

b+Y 4
ijǫ

bc(LL)i
a(Lc

L)j
c(φ

′)a
b

)

+
1

2

[

δ

(

y− πR

2

)

+δ

(

y+
πR

2

)]

∑

ij

(

Y 5
ijǫ

ab(LL)i
a(LL)j

bT1+Y 6
ijǫ

ab(Lc
L)i

a(Lc
L)j

bT2

)







Here the ± signs correspond to the relative parity assignment (identical or inverse) in front

of QL and Qc
L (LL and Lc

L), respectively. After expanding φ and φc in their KK modes,

we can see that amongst the zero modes only two SU(2)L doublets remain which are

identified as Hu and Hd of the supersymmetric standard model.The electric charged field

T1(T2) can couple to two leptons as νLeL(νReR) etc. The U(1)B−L number for quarks and

leptons can be determined by anomaly cancellation requirements for [SU(2)L]2U(1)B−L,

[SU(2)R]2U(1)B−L, [U(1)B−L]3, as well as [Gravity]2U(1)B−L, and [SU(3)C ]2U(1)B−L, etc.

The normalization of the Higgs sector can be determined by the requirement that the

Yukawa couplings should be invariant under U(1)B−L. The charge quantization conditions,

in terms of the SU(4)W fundamental representation, are

Q1 +Q3 = Q2 +Q3 = 0, Q3 +Q4 = 2b , (5.10)

where b is the U(1)B−L number for leptons. The fields T1 and T2 are necessary to determine

the U(1)B−L quantization conditions because they give the second equation in the previous
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formula. From the first equation and traceless condition follows that the U(1)B−L generator

is proportional to the SU(4)W generator

TB−L = diag(−a,−a, a, a) . (5.11)

From the second equation we obtain that a = b = 1. (Here we rely on the phenomenological

requirement that the relative normalization of the U(1)B−L charge between the Higgs and

lepton sectors was chosen to be b = 1). From these quantization conditions, we obtain

2g2
B−L = g2

4 . Since the U(1)3R gauge group can be realized as the diagonal subgroup of

SU(2)R, its normalization condition is set by SU(2)R, which leads to the relation g2
3R = g2

4 .

From the charge assignments we obtain

Q = T3L +
Y3R

2
+
YB−L

2
. (5.12)

The tree level weak mixing angle is again sin2 θW = 0.25.

The quantization conditions imply the parity and quantum numbers for all the bulk

fields

V (15) = 3
(+,+)
(0,0) ⊕ 1

(+,+)
(0,0) ⊕ 1

(+,+)
(0,0) ⊕ 2

(+,−)
(−1,−2) ⊕ 2̄

(+,−)
(1,2) ⊕ 2

(−,−)
(1,−2) ⊕ 2̄

(−,−)
(−1,2)⊕1

(−,+)
(−2,0)⊕1

(−,+)
(2,0)

Σ(15) = 3
(−,−)
(0,0) ⊕ 1

(−,−)
(0,0) ⊕ 1

(−,−)
(0,0) ⊕ 2

(−,+)
(−1,−2) ⊕ 2̄

(−,+)
(1,2) ⊕ 2

(+,+)
(1,−2) ⊕ 2̄

(+,+)
(−1,2)⊕1

(+,−)
(−2,0)⊕1

(+,−)
(2,0)

Φ(10) = 3
(+,−)
(0,−2) ⊕ 2

(+,+)
(1,0) ⊕ 2

(−,+)
(−1,0) ⊕ 1

(+,−)
(2,2) ⊕ 1

(+,−)
(−2,2) ⊕ 1

(−,−)
(0,2) ,

Φc(10) = 3̄
(−,+)
(0,2) ⊕ 2̄

(−,−)
(−1,0) ⊕ 2̄

(+,−)
(1,0) ⊕ 1

(−,+)
(−2,−2) ⊕ 1

(−,+)
(2,−2) ⊕ 1

(+,+)
(0,−2),

Φ(10) = 3̄
(+,−)
(0,2) ⊕ 2̄

(+,+)
(−1,0) ⊕ 2̄

(−,+)
(1,0) ⊕ 1

(+,−)
(−2,−2) ⊕ 1

(+,−)
(2,−2) ⊕ 1

(−,−)
(0,−2),

Φc(10) = 3
(−,+)
(0,−2) ⊕ 2

(−,−)
(1,0) ⊕ 2

(+,−)
(−1,0) ⊕ 1

(−,+)
(2,2) ⊕ 1

(−,+)
(−2,2) ⊕ 1

(+,+)
(0,2) . (5.13)

Subscripts denote U(1)3R and U(1)B−L quantum numbers, respectively. We can see that

there are zero mode components in Σ(15) decompositions. Such zero modes can act as

Higgs doublets in the MSSM, if we adopt the gauge-Higgs unification scheme. However

such Higgs fields cannot couple to matter fields because of un-matching quantum numbers.

The SU(2)L × U(1)3R × U(1)B−L gauge symmetry can be broken to the SM one (in

SUSY cases) via the bulk Higgs fields H1(1,4) and H2(1, 4̄) (here SU(3)C × SU(4)W
representations are shown). Parity can be assigned to these Higgses as

ηHi = −1 , η′Hi = −1 (i = 1, 2) . (5.14)

From the decomposition of SU(4)W in terms of SU(2)L × U(1)3R × U(1)B−L

(H1)(4) = 2
(−,−)
(0,−1) ⊕ 1

(−,+)
(1,1) ⊕ 1

(+,+)
(−1,1) , (H1)c(4̄) = 2̄

(+,+)
(0,1) ⊕ 1

(+,−)
(−1,−1) ⊕ 1

(−,−)
(1,−1) ,

(H2)(4̄) = 2̄
(−,−)
(0,1) ⊕ 1

(−,+)
(−1,−1) ⊕ 1

(+,+)
(1,−1) , (H2)c(4) = 2

(+,+)
(0,−1) ⊕ 1

(+,−)
(1,1) ⊕ 1

(−,−)
(−1,1) , (5.15)

follows that the zero modes of H i (i = 1, 2) contain two SU(2)L singlets U1
(−1,1) and U2

(1,−1)

(subscripts denote U(1)3R×U(1)B−L quantum numbers) which are electrically neutral and

cannot couple to matter directly. The zero modes for (H i)c contain two Higgs doublets
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2̄
(+,+)
(0,1) and 2

(+,+)
(0,−1) which can not couple to matter either because of non-matching quantum

numbers. After U1 and U2 acquire VEVs, the remaining gauge symmetry is broken to the

SM gauge group.5 Note that T1 and T2 cannot be used to break this gauge symmetry

because they have electric charges.

The beta functions of the gauge couplings U(1)Y , SU(2)L, SU(3)C read

(b1, b2, b3) =

(

25

3
,−7

3
,−7

)

for MZ < E < MS , (5.16)

(b1, b2, b3) = ( 15, 3,−3) for MS < E < M ′
Z . (5.17)

In the SUSY and SUSY decoupling limits, there are six Higgs doublets. For the
√

2U(1)B−L,

U(1)3R/2, SU(2)L, and SU(3)C gauge couplings the beta functions are

(bB−L
1 , b3R

1 , bL2 , b3) =

(

23

4
,
17

2
, 3,−3

)

for M ′
Z < E < MC . (5.18)

The beta functions corresponding to the even and odd KK modes at one loop are

(bB−L,e, bB−L,o) =

(

−1

2
,
13

2

)

, (5.19)

(b3R,e, b
L
3R,o) = ( 1, 5) , (5.20)

(bR2,e, b
R
2,o) = (−2, 8) , (5.21)

(bR3,e, b
R
3,o) = (−6, 0) . (5.22)

Just as in the previous case, the SU(4)W preserved bo + be is constant for the three

gauge couplings. Thus, the relative RGE running between the three gauge couplings are

logarithmic. As we do not know the gB−L or g3R gauge couplings at the M ′
Z scale (or the

relations between the two gauge couplings), we must invoke further assumptions related to

them to predict the unification scales. SUSY breaking can again be achieved by the Scherk-

Schwarz mechanism through boundary conditions. The tree-level gaugino and Higgsino

masses acquired this way will induce loop-level squark and slepton masses.

The phenomenology of this symmetry breaking chain shares many common features

with that of the previous cases. For example, there are charge two heavy gauge bosons and

two SU(2)L charged gauge singlets scalars which can only derivatively couple to charged

lepton pairs. At energies well below the MC scale, the low energy effective theory reduces

to supersymmetric SU(2)L × U(1)3R × U(1)B−L. This U(1) extension of the SM has been

widely studied. The special feature of this scenario is the existence of Higgs doublets which

have no tree level couplings to SM fermions even when the low energy SU(2)L × U(1)Y
quantum number allow such couplings. The electrically neutral SU(2)L singlet Higgses, U1

and U2, which break the remaining group to the SM, can be viable dark matter candidates.

5It is also possible to break the remaining gauge group to the SM via localized Higgs fields A(1,2,−1) (in

terms of SU(2)L ×SU(2)R ×U(1)B−L quantum number) on the O′ brane. Such localized brane Higgs fields

can break the gauge group SU(2)R × U(1)B−L on the O′ brane to U(1)Y , which corresponds to breaking

the bulk U(1)B−L × U(1)3R to U(1)Y . The other possibility is to introduce two ∆(10) representations for

SU(4)W with parity assignment η∆i = η′

∆i = 1. The VeV of the neutral component 1
(+,+)
(2,−2) will break

U(1)3R as well as give Majorana neutrino masses for right handed neutrino.
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Alternative models. We can locate the SM quarks and right-handed charged leptons on

the O′ brane while placing the SM lepton doublets and right-handed neutrinos in the bulk.

We can introduce mirror leptonsXL, Xc
L, X̄, X̄c, YL, and Y c

L to fill the bulk hypermultiplets

Fi (i = 1, 2) in the (1,4) representation under SU(3)C × SU(4)W :

F1 = (LL XL) , F2 = (X̄, (Lc
L)′) ,

F c
1 = (YL Xc

L) , F c
2 = (X̄c, Y c

L) . (5.23)

Here (Lc
L)′ denotes (Ec

L −νc
L), with Ec

L being a charged mirror lepton. Then, we can assign

parities as

ηF1 = 1 , η′F1
= 1 , ηF2 = −1 , η′F2

= −1 . (5.24)

The left-handed leptons and neutrinos LL arise from F1, and the right-handed neutrinos

from F2. Note that we cannot fit right-handed leptons in F c
1 because that does not yield

the correct quantum numbers. Mirror fermions associated with each SM leptons, except

with the right-handed charged leptons, will survive the projection.

As previously, we can locate the SM quarks and right-handed neutrinos on the O′

brane while having the SM lepton doublets and right-handed charged leptons in the bulk.

The parity assignments read

P = diag(+1,+1,+1) ⊗ diag(+1,+1,−1,+1) ,

P ′ = diag(+1,+1,+1) ⊗ diag(+1,+1,−1,−1) . (5.25)

Similarly to our previous case, we obtain mirror fermions associated with each SM leptons

from zero modes, except for right-handed neutrinos.

6 Conclusions

In this paper, we propose a low scale SU(4)W unification model which has two symmetry

breaking chains. In the first chain SU(4)W is broken into the SU(2)L × SU(2)R ×U(1)B−L

minimal left-right model through S1/(Z2×Z2) orbifolding. Leptons are fitted into SU(4)W
multiplets and located on a symmetry preserving O brane, while quarks are placed on O′

brane where the symmetry is broken. This approach predicts sin2 θW = 0.25 for the weak

mixing angle at tree level and leads to a rather low weakly coupled unification scale of

order 102 TeV with supersymmetry, or as low as several TeV in the non-supersymmetric

case. If we introduce mirror fermions and put quarks in the bulk, the model gives a large

weak mixing angle sin2 θW = 0.45 which will lead to high-energy unification. The other

symmetry breaking chain with the low-energy gauge group SU(2)L × U(1)3R × U(1)B−L

after OGSB can also give rise to a weak mixing angle sin2 θW = 0.25 at tree level. In

this scenario, leptons and quarks are placed on the O′ brane (with broken symmetry) and

the quantization conditions are determined by anomaly cancelation requirements. These

low-scale unification theories have interesting phenomenological consequences.

One may worry if there are cosmological difficulties associated with this scenario such as

the monopole problems etc. In fact there are no monopole problems in our scenario because

we break the gauge symmetry via orbifolding. In general there are monopole problems if
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a gauge symmetry is broken to a subgroup containing U(1) via Higgs mechanism with

the unification scale lower than the inflation scale and at the same time higher than TeV

scale [29]. It is not a problem in OGSB scenario because the gauge symmetry is broken

via boundary conditions with the symmetry broken explicitly in the orbifold fix points. So

our scenario is not bothered by the cosmological monopole problems.
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